My midyear report card

So my midyear report card results are in. As always, they’re a mixed bag. Here are a few comments directly from the kiddos. First, the good:

  • I like the amount of time we have to explore math in the class. It’s not just sitting down listening to a teacher all period.
  • I like how resourceful we are and a teacher isn’t always 100% necessary.
  • I like how we get to put up the problems on the board and are allowed to go to other tables to compare answers or to ask help. 
  • The way we learn from each other’s work.
  • I like how the students have a right in their teaching in a way.
  • I have the freedom to walk around and don’t have to be confined to my desk.
  • I like the freedom in the class and learning from the problems rather than cumbersome units.
  • Nobody judges others on their work.
  • We focus on different types of problems that all connect to each other.

And the not-so-good:

  • It can be improved by actually teaching a lesson so that the lesson can be more clear.
  • I think there should be more traditional teaching.
  • You can try to lead the class a bit more rather than the students teaching it.
  • More lessons and notes rather than just problems.
  • Topics can be gathered into categories by Mr. Palacios so we know what we’re dealing with.
  • You should talk more.
  • Our class should try to identify problems or topics we are confused on therefore allowing you to step in and teach the topic.
  • I would really want for you to take charge of the class instead of the students.
  • Teaching in front of the board like once a week.

Notice a theme?

Based on the comments, it’s clear to me that my students are uncomfortable with the high levels of autonomy that I have afforded them. Well, let’s talk about the structure. It doesn’t happen everyday, but usually I assign 5 problems for homework (designed as learning experiences, not traditional practice). I expect them to come in the next day, put their work to the problems up on the whiteboards and thoroughly discuss the solutions they found in small groups. While this is happening, I assess their thinking and step into their group’s conversations to help drive the learning. For the most part, they can move freely about the room, but at times I will strategically move kids to different groups, a.k.a. visible random grouping. Afterwards, I sequence the presenters for the 5 problems and a whole class discussion around the solutions to the problems closes things out.

Through this structure, I have tried to minimize the amount of direct instruction that I do all the while interleaving mathematical ideas through problems. I’ve wanted student discussion to completely direct the learning and the problems to be the vehicle that makes that happen. Damn, that sounds so good in theory. I know in September it did.

Admittedly, I probably went a little too gung-ho about the student-driven, discussion-based learning. It was just so tasty. But I could have taken baby steps. I could have tried it out for a few lessons, learned its flaws and iterated on a smaller scale. But, no, I had to go all in. And I’m drowning because of it.

But all is not lost. The kids really love working on the whiteboards and freely getting help from others in the class. This is liberating for them. They aren’t confined to their seat and they appreciate this. The whiteboards give them an outlet to collaborate, which they have been eating up. If nothing else, at least they are engaged. They just need more guidance from me. And the problem-based learning has enabled the content to be interleaved and naturally spiraled, which has been so worthwhile for long-term learning. For the most part, the kids have gotten over not having discrete units.

So where do I go from here? Well, after seeking therapy from my colleagues all day, I think I’m going to begin incorporating “anchor” problems throughout the problem sets I give students. These should take a full class period to solve and I will help guide students through them with direct instruction. I hope that they will serve as a shared experience that future problems will connect to and provide them with a basic understanding of a concept.

In addition, I want to do some problem strings with them as a whole class. Again, this will serve as another shared problem-solving experience that can allow for in-depth exploration of future problems…and more direct involvement of myself.

Every few days at the start of class, I plan on giving 5-10 minute, unannounced “checkpoints”  to check for understanding on what we’ve been learning. A huge weakness of semester one was not giving the kids opportunities to validate their learning. This resulted in them feeling confused and thinking they weren’t learning. Plus, I didn’t measure where they were in their understanding of key ideas until an exam. Not good. The checkpoints will inherently result, again, in more direct intervention by me and will help me adjust how we move forward.

Lastly, we just need to have more fun in class. Things got somewhat tight and tense near the end. I hated it.

I’m going to start day 1 of semester two sharing all this with my students. I want them to hold me accountable. I’ll share my reflections and ask them to reflect on what they can do to make the second half of the year better than the first. They will write a few paragraphs and submit them to me as I’m going to hold them accountable, too. Many of them don’t do the assigned homework each night because I don’t give points for it, so I hope to pull this out of them.

 

bp

 

Growing pains

Today a student in my class was brought to tears. 

She cried because of my teaching. Specifically, the problem-based, discussion-based learning that I’ve adopted has been troubling her. She said that she was lost and hasn’t learned anything so far this year. Knowing the student, I politely disagreed, but she was having none of my excuses. On top of this, she’s also missed several days because of an illness. She told me more – and then the tears came. She cried, hurting because of the confusion and emptiness she felt for her math class.

It was after class and I did my best to console her, but I didn’t really know how to react. It’s not every day that a kid cries in my classroom. I tried to reassure her that I’m not out to make her life miserable, that I was on her team, that she should trust the process, that she needs the teacher far less than she thinks she does, that I would never abandon her or any other student. I offered tutoring. 

Tutoring?? The girl is crying!

It’s needless to say, but my response failed miserably. 

If I wasn’t already aware, this powerful moment shed light on how my own growing pains with PBL have transferred to the students I serve. I’m learning to teach again. They’re uncomfortable and worried. All in all, it sucks. 

Afterwards, I couldn’t help but wonder whether or not overhauling my teaching is really worth it in the end. Do the perceived long-term benefits outweigh the hopelessness that may be creeping into the minds of my students? 
bp

Updates on my problem-based experiment in algebra 2

As a means of tracking the progress I make in my newfound problem-centered classroom, I’m posting some recent developments and thoughts. These notes are incredibly informal and far from polished.

  • I’ve settled on assigning 5-6 problems for homework. When they come to class, I give the groups 20-25 minutes to peer review and make sense of the problems. They show their work on the large whiteboards around the room so everyone can see. As a class we then spend the last 10-15 minutes of the period in a whole group discussion with students presenting their solutions on the large whiteboards.
  • I’m now thinking…why can’t I use visibly-random groups as they peer review the problems??
  • I need to do a better job of establishing coherence within the problems. For the first 20 problems or so, students feel like they were doing random problems covering unconnected concepts. In some ways, they were since I was trying to establish some norms and routines through the problems.
    • Admittedly, the first 20 problems lacked coherence (and therefore meaning). It’s ok to intersperse concepts, but I should have a focus (or foci) for each problem string we go through.
    • It seems around 20 problems is a fair amount for each exam to assess.
  • Duh: class size matters! Periods 1 and 8 both downsized and it made a world of difference. I now have groups of around 5-6 discussing the problems. It’s only been a few days, but this has been so much more effective than the whole-class discussions we had at the onset. As I visit groups, small group instruction is the norm. I’m doing my best to simply ask questions and avoid direct instruction on the problems. I think I need a develop a simple protocol to follow when I approach a group.
    • One thing I should get back into is asking for “group questions” only. There are too many students doing their own thing and not all students in the groups are actively discussing the same problems each day. I need to push this more.
  • After emphasizing problem-solving and group discussion ahead of answers, I started providing correct answers on the board halfway through the period. Students were uncomfortable because there was too much ambiguity in final answers (thank you high-stakes exams), especially since sometimes I can’t get around to everyone’s work.
  • I am worried about the more introverted students in the class, those not openly engaging in group discussions. At times they seem to not be engaged.
  • How should my exit slip or “closing” to each day look? Note: I need to make time for this.
  • I haven’t been surfacing problem-solving strategies as students work through problems. Related: there hasn’t been a lot of focus on the various ways and perspectives to solve these problems.
  • I need to organize a day/lesson where students purposely make connections between problems and establish big ideas for the course.
    • Makes me think of Dan Meyer’s co-authoring the class post. I’m thinking we, as a class, can create a large concept map on the wall with paper and string making connections between key concepts and problems. In this way, instead of me saying, “all these problems belong to unit 7, exponential functions,” students can surface these sorts mathematical connections for themselves and own the content. That’s the dream, anyhow.
    • Maybe start with a table with columns for problems, big ideas, key vocabulary?
  • I’m allowing for students to create a 3×5 index card for use on the exams. I don’t do review days before exams so this is my way of getting them to prepare. It also forces me to think creatively about the problems I include on exams!
  • To break up the monotony of this structure, I need to begin planning lessons that don’t revolve the same sort of group discussions. I also want students to see that class won’t always look the same.
  • I have seen whiteboards being used very effectively. Student thinking is public. At times, students are moving freely around the room to independently seek out methods and strategies.
  • With these 12 whiteboards being actively used in every part of the room, I think I have successfully defronted the room. That’s a win.
  • Because the boardwork students are doing is so important, and since students can’t use their phones in my school, at the end of the period I want a student to take photos of the boards using an iPad. They would then email it the class. This would alleviate students’ feverishly copying correct work into their notes during the whole class discussion.
  • Another thing so far that I love is that the class has been focusing on doing and actively engaging with mathematics. Plus, there’s been lots and lots of struggle with the problems. That’s great, but now I just my students to be comfortable with being uncomfortable. Hopefully in time.
  • I managed to set up a spreadsheet aligning the problems to the standards-based grading “concepts” that I used last year. Although I don’t share this with students, I’m using it to guide the problem strings that I write.
  • I’m still far away of student buy-in — which I desperately need. This is due in part because of the rough start I had in sequencing the first series of problems.

 

bp