One graph. Ten minutes. An important conversation.

At the beginning of class I showed this to my students:

Screen Shot 2018-11-14 at 10.09.40 AM

They came up with lots of interesting things.

  • There are three variables
  • They are functions
  • They are different colors
  • The units are millions and years
  • The scale for the millions is by 500,000’s and for years is decades
  • The domain of all 3 functions is 1920 to 2010
  • The range is 0 to 2.5 million
  • All of the functions are positive over their domain
  • The average rate of change for the red graph from 1920 to 2010 is positive
  • The average rate of change for the light purple graph from 1920 to 2010 is close to zero
  • The greatest average rate of change for all functions appears to occur from 1980 to 2000.

Then I asked them to predict what the graph was about. Most felt it detailed some sort of economic situation. Or population. Then came the reveal:

Screen Shot 2018-11-14 at 10.09.06 AM

They were shocked. We talked about possible causes for this situation, like the school-to-prison pipeline and the privatization of the prisons. More eyebrows raised. I brought up the question of what the racial breakdown of the prison system might look like. It was an important conversation.

And then we moved on to the regularly scheduled program: the lesson.

That was this week. While this class opener wasn’t directly tied to work that we’ve been doing in algebra 2 and was relatively brief, I felt compelled to have this conversation with my kids. This summer I began thinking about how to deepen the connections between social issues and math. Since I suck at projects, I thought about making these connections in smaller, bite-sized ways — comparable to problems found on a typical NYS Regents exam. In an ideal world, I would find (and write some) problems around social issues that are directly tied to the algebra 2 curriculum and discuss them with students. But this is really, really hard. Factoring by grouping doesn’t exactly lend itself to talking about racial inequities.

I was upfront with them. I said that its hard for me to relate some of the mathematics we learn to their daily lives, but we can do it in other ways. I told them that it was my responsibility to help you see how math can you uncover your world. Graphs are one way.

Through this graph of incarcerated Americans, I’ve myself learned that periodically presenting an interesting graph or data can be another way to build in time for important discussions around social justice and empowering students through math — even if the discussion isn’t wrapped up in a “problem” or directly tied to what we’re studying. This is not unlike What’s Going On in this Graph from the NY Times.

 

bp

#blackbrillance + social justice + problem-based learning

51gof92bs3nl-_sx331_bo1204203200_

One of my summer reads has been The Brilliance of Black Children in Mathematics by Jacqueline Leonard and Danny B. Martin (inspired by Annie Perkins). I’m almost three-quarters of the way through it. It is rather dense because it’s packed with research, but I’ve been enjoying it.

Chapter 6 has stood out. It focused on the development of culturally relevant, cognitively demanding (CRCD) mathematical tasks. The authors of the gave this definition of CRCD:

Culturally relevant, cognitively demanding tasks should be mathematically demanding tasks and embedded in activities that provide opportunities for students to experience personal and social change. The context of the task may be drawn from students’ cultural knowledge and their local communities. But, the use of context goes beyond content modification and explicitly requires students to inquire (at times problematically) about themselves, their communities, and the world around them. In doing so, the task features an empowerment (versus deficit or color-blind orientation) toward students’ culture, drawing on connections to other subjects and issues. CRCD tasks ask students to engage in and overcome the discontinuity and divide between school, their own lives, community and society, explicitly through mathematical activity. The tasks are real-world focused, requiring students to make sense of the world, and explicitly critique society — that is, make empowered decisions about themselves, communities, and world. (p. 132)

The authors go on to caution the reader that finding/creating a CRCD task isn’t enough:

It should be reiterated here that task creation is by far only the beginning. Culturally relevant pedagogy necessitates that teachers learn about students, their culture, and their backgrounds. Ladson-Billings (1994) indicates that the teacher must be the driving force to creating a culturally relevant classroom. The contexts of the tasks alone will not necessarily make for the culturally relevant environment. It is the thinking behind the tasks and the actions during the implementation that make them culturally relevant. Without the appropriate set up of the task and the accompanying discussion and connection to the students and/or their communities, the task although created as culturally relevant, will lose its relevance. (p. 134-135)

This all got me thinking about all of the problem-based learning that I did last year with my kiddos. Our focus all year was thinking about, discussing, and solving problems that built on each other. As such, the big ideas of the algebra 2 curriculum were slowly uncovered through the problems. I used a range of pedagogical approaches but mainly leaned on whiteboarding (VRG and VNPS) to foster small and whole group discussions. On top of all this, back in June, I learned of Brian Lawler, who has done work around how teaching mathematics equitably requires problem-based learning. It’s an interesting take and learning from him provided even more incentive for me to improve my PBL approaches. Here are the slides to a presentation that he gave at the PBL Summitt in 2016.

So reading through chapter 6, it hit me that the PBL setting that I’m constantly improving affords my kids frequent, bite-sized opportunities to have meaningful discussions about relevant, empowering mathematics — exactly what I didn’t do last year. I centered all of the problems in contexts typically found on the Regents exams, which surely has its place, but when considering that 90% of my students are either Black or Latinx, it is an issue. The bottom line was that there was a strong disconnect between the problems I curated and my students’ lived realities. Here’s an example from last year’s problems (I could have chosen many more):


Screen Shot 2018-07-17 at 7.06.23 AM


While fairly procedural, it’s a pretty standard Regents problem. Most algebra 2 teachers in New York wouldn’t complain too much about it.

Other than the unrealistic nature of the problem, what I’m coming to grips with is that the discussion we have a problem like this involves just mathematics, not the implications of the mathematics and how it directly affects how my students view themselves and/or society. The challenge I’m setting forth to myself now is to find ways to change the narratives that my problems present to my students that will help us have more meaningful, transformative conversations.

For instance, after combing through the website Radical Math, I found myself thinking about all those payday loan joints that are everywhere in the city, especially in Black and Latinx communities like where my school is located (and where I myself live). With interest rates as high as 400 percent, they help create a wicked cycle of debt that cripples many folks who are struggling to make ends meet — some of whom are quite possibly parents of my students. In addition, they target people of color. I’m thinking that instead of focusing on Bella, Ella, and their mythical interest rates, I could help my students explore about the damaging impact these lenders have our communities through introducing data from the above sources and through a series of problems that they grapple with. It’s not perfect, but here’s an example:


Screen Shot 2018-07-17 at 6.45.14 AM


I’m pretty bad at using math to generate discussions about broader social issues like race. But then again, apart from beyond the white dudes, I’ve never had math problems to catalyze such discussions. I hope I’m better with facilitating discussions about problems like this, to help students see how they can better identify with math. If so, the result could be something important, relevant, and empowering.

This is a long post.

Last thing. The authors shared some examples of these sorts of problems that were created by graduate students who were also teachers. What was interesting was that, after studying the problems, the authors found that “very few of the teachers used race as a basis for their culturally relevant tasks.” Instead, the primary culture the teachers relied on was age. For me, it’s easy to get excited about some other aspect of problem set and get swept away in White culture, so this is a reminder to deliberately seek to address race in the problems and activities I use.

Through all of this, I feel like I’m getting closer to where I need to be, but I’m still left thinking about the many ideas in algebra 2 and how I might address them in the midst of the looming Regents exam.

 

bp